skip to main content

gaia data release 3 documentation

4.3 Calibration models

4.3.3 Astrometric source model

Author(s): Lennart Lindegren

The astrometric model is a recipe for calculating the proper direction 𝒖i(t) to a source (i) at an arbitrary time of observation (t) in terms of its astrometric parameters 𝒔i and various auxiliary data, assumed to be known with sufficient accuracy. The auxiliary data include an accurate barycentric ephemeris of the Gaia satellite, 𝒃G(t), including its coordinate velocity d𝒃G/dt, and ephemerides of all other relevant solar-system bodies. The details of the model have been outlined in Section 3.2 of Lindegren et al. (2012) or Section 4.1.4 and only a short introduction is given here.

As explained in Section 4.1.3, the astrometric parameters refer to the ICRS and the time coordinate used is TCB. The reference epoch tep is preferably chosen to be near the mid-time of the mission in order to minimize statistical correlations between the position and proper motion parameters.

The transformation between the kinematic and the astrometric parameters is non-trivial (Klioner 2003a), mainly as a consequence of the practical need to neglect most of the light-propagation time t-t* between the emission of the light at the source (t*) and its reception at Gaia (t). This interval is typically many years and its value, and rate of change (which depends on the radial velocity of the source), will in general not be known with sufficient accuracy to allow modelling of the motion of the source directly in terms of its kinematic parameters according to Equation 4.1. The proper motion components μα*i, μδi and radial velocity vri correspond to the ‘apparent’ quantities discussed by in Sect. 8 of Klioner (2003a).

The coordinate direction to the source at time t is calculated with the same ‘standard model’ as was used for the reduction of the Hipparcos observations (ESA (1997), Vol. 1,  Sect. 1.2.8), namely

𝒖¯i(t)=𝒓i+(tB-tep)(𝒑iμα*i+𝒒iμδi+𝒓iμri)-ϖi𝒃G(t)/Au (4.100)

where the angular brackets signify vector length normalization, and [𝒑i𝒒i𝒓i] is the ‘normal triad’ of the source with respect to the ICRS (Murray 1983). In this triad, 𝒓i is the barycentric coordinate direction to the source at time tep, 𝒑i=𝒁×𝒓i, and 𝒒i=𝒓i×𝒑i. The components of these unit vectors in the ICRS are given by the columns of the matrix

𝖢[𝒑i𝒒i𝒓i]=[-sinαi-sinδicosαicosδicosαicosαi-sinδisinαicosδisinαi0cosδisinδi]. (4.101)

𝒃G(t) is the barycentric position of Gaia at the time of observation, and Au the astronomical unit. tB is the barycentric time obtained by correcting the time of observation for the Römer delay; to sufficient accuracy it is given by

tB=t+𝒓i𝒃G(t)/c, (4.102)

where c is the speed of light. See Section 3.2 of Lindegren et al. (2012) for further details.

The iterative updating of the sources is described in Section 5.1 of Lindegren et al. (2012). There the method of identifying potential outliers and estimating the excess source noise ϵi is also outlined together with the calculation of the partial derivatives of the coordinate direction with respect to the source parameters.

The perspective acceleration modelled by μr=vrϖ/Au in Equation 4.100 is totally negligible for the vast majority of sources, and μr=0 (at the reference epoch) is therefore normally assumed, equivalent vr=0. For Gaia DR3 we used the radial velocity from the RVS instrument (as given in Gaia DR2), complemented by values from the literature for the 38 sources listed in Table 4.3. The accumulated effect over a time interval T is Δ=|vr|μϖT2/Au, where μ=(μα*2+μδ2)1/2 is the total proper motion and Au=977792221.680789 mas yr km s-1 is the astronomical unit. The largest effect, Δ4.9 mas (for T=2.76 yr), is obtained for Barnard’s star (Gaia DR3 4472832130942575872).

Table 4.3: Sources for which the astrometric solution was corrected for perspective acceleration using vr from the literature.
Source identifier HIP vr
[km s-1]
Gaia DR3 222749343414443648 16209 -173.0
Gaia DR3 470826482637310080 21088 27.9
Gaia DR3 762815470562110464 54035 -84.69
Gaia DR3 778947814402602752 54211 68.89
Gaia DR3 1129149723913123456 57544 -111.65
Gaia DR3 1364668825433435776 84140 -30.1
Gaia DR3 1364668825433448704 84140 -30.1
Gaia DR3 1364668825433454848 84140 -30.1
Gaia DR3 1364668825435187840 84140 -30.1
Gaia DR3 1637645127018395776 86162 -28.58
Gaia DR3 1872046609345556480 104214 -65.74
Gaia DR3 2007876324466455040 110893 -33.94
Gaia DR3 2007876324472098432 110893 -33.94
Gaia DR3 2261614264931057664 96100 26.78
Gaia DR3 2306965202564744064 439 25.38
Gaia DR3 2358524597030794112 5643 28.09
Gaia DR3 2452378776434477184 8102 -16.68
Gaia DR3 2552928187080872832 3829 263.0
Gaia DR3 3139847906307949696 36208 18.22
Gaia DR3 3195919528989223040 19849 -42.32
Gaia DR3 3340477717172813568 26857 105.83
Gaia DR3 3796072592206250624 57548 -31.09
Gaia DR3 4268226078065241600 94349 -42.4
Gaia DR3 4472832130942575872 87937 -110.51
Gaia DR3 4810594479418041856 24186 245.19
Gaia DR3 4847957293278177024 15510 87.4
Gaia DR3 4937000898856156288 10138 57.0
Gaia DR3 5339892367684811520 55042 -35.0
Gaia DR3 5690980582306104448 48336 61.6
Gaia DR3 5853498713190525696 70890 -22.4
Gaia DR3 5918660719983560192 86990 -115.0
Gaia DR3 5955305209191546112 86214 -60.0
Gaia DR3 6228695270698475392 72511 -39.6
Gaia DR3 6232511675556408320 73182 35.63
Gaia DR3 6254033894121581952 76901 84.92
Gaia DR3 6378584028690858496 113229 46.6
Gaia DR3 6583272171336048640 105090 20.11
Gaia DR3 6894054664842632448 106255 -57.7
Notes. vr is the assumed radial velocity taken from SIMBAD (Wenger et al. 2000). For all other sources the Gaia DR2 radial velocity was used when available.